180 research outputs found

    Inverse designing surface curvatures by deep learning

    Full text link
    Smooth and curved microstructural topologies found in nature - from soap films to trabecular bone - have inspired several mimetic design spaces for architected metamaterials and bio-scaffolds. However, the design approaches so far have been ad hoc, raising the challenge: how to systematically and efficiently inverse design such artificial microstructures with targeted topological features? Here, we explore surface curvature as a design modality and present a deep learning framework to produce topologies with as-desired curvature profiles. The inverse design framework can generalize to diverse topological features such as tubular, membranous, and particulate features. Moreover, we demonstrate successful generalization beyond both the design and data space by inverse designing topologies that mimic the curvature profile of trabecular bone, spinodoid topologies, and periodic nodal surfaces for application in bio-scaffolds and implants. Lastly, we bridge curvature and mechanics by showing how topological curvature can be designed to promote mechanically beneficial stretching-dominated deformation over bending-dominated deformation.Comment: 23 pages, 12 figure

    Learning and Prediction Theory of Distributed Least Squares

    Full text link
    With the fast development of the sensor and network technology, distributed estimation has attracted more and more attention, due to its capability in securing communication, in sustaining scalability, and in enhancing safety and privacy. In this paper, we consider a least-squares (LS)-based distributed algorithm build on a sensor network to estimate an unknown parameter vector of a dynamical system, where each sensor in the network has partial information only but is allowed to communicate with its neighbors. Our main task is to generalize the well-known theoretical results on the traditional LS to the current distributed case by establishing both the upper bound of the accumulated regrets of the adaptive predictor and the convergence of the distributed LS estimator, with the following key features compared with the existing literature on distributed estimation: Firstly, our theory does not need the previously imposed independence, stationarity or Gaussian property on the system signals, and hence is applicable to stochastic systems with feedback control. Secondly, the cooperative excitation condition introduced and used in this paper for the convergence of the distributed LS estimate is the weakest possible one, which shows that even if any individual sensor cannot estimate the unknown parameter by the traditional LS, the whole network can still fulfill the estimation task by the distributed LS. Moreover, our theoretical analysis is also different from the existing ones for distributed LS, because it is an integration of several powerful techniques including stochastic Lyapunov functions, martingale convergence theorems, and some inequalities on convex combination of nonnegative definite matrices.Comment: 14 pages, submitted to IEEE Transactions on Automatic Contro

    Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview

    Get PDF
    Understanding the aging mechanism for lithium-ion batteries (LiBs) is crucial for optimizing the battery operation in real-life applications. This article gives a systematic description of the LiBs aging in real-life electric vehicle (EV) applications. First, the characteristics of the common EVs and the lithium-ion chemistries used in these applications are described. The battery operation in EVs is then classified into three modes: charging, standby, and driving, which are subsequently described. Finally, the aging behavior of LiBs in the actual charging, standby, and driving modes are reviewed, and the influence of different working conditions are considered. The degradation mechanisms of cathode, electrolyte, and anode during those processes are also discussed. Thus, a systematic analysis of the aging mechanisms of LiBs in real-life EV applications is achieved, providing practical guidance, methods to prolong the battery life for users, battery designers, vehicle manufacturers, and material recovery companies

    Analysis of OAM Mode Purity in Phased Array Antenna

    Get PDF
    In this paper, the orbital angular momentum of different modes in electric field is decomposed, and the definition of purity of OAM mode in OAM antenna are proposed. Based on the purity theory, the purity of circular array is derived. And the effects of different parameters on the purity are analyzed. An intuitive and quantifiable dimension for comparing the OAM performance in phased array antenna is provided in this paper

    Analysis of Route Choice for Pedestrian Two-Stage Crossing at a Signalized Intersection

    Get PDF
    Studying pedestrians’ twice-crossing behavior is of great significance to enhance safety and efficiency for pedestrians at signalized intersections. However, limited attention has been paid to analyze and model pedestrians’ behavior patterns of twice crossing. The purpose of this paper is to determine pedestrians' route choices for twice crossing at a signalized intersection, focusing on the waiting position (to cross the street) and walking route. A goal-oriented and time-driven model was proposed to analyze pedestrians’ twice-crossing behavior at signalized intersections, where the two directions have different pedestrian signal timing. A video-recording method was used to collect field data in order to obtain pedestrian preferences in choosing a walking route. It was found that pedestrians in the two directions present different preferences toward walking route, in waiting position, directional change and route type. The results showed that the proposed model is effective in simulating pedestrian route-choice behavior of twice crossing. This research provides a theoretical basis for identifying pedestrian movement intention, optimizing signal timing, and improving pedestrian infrastructure at signalized intersections.

    Analysis of Red-Light Violation Behavior of Pedestrian Two-Stage Crossing at a Signalized Intersection

    Get PDF
    Studying pedestrians’ twice-crossing behavior is of great significance to enhance safety and efficiency for pedestrians at signalized intersections. However, researchers have paid little attention to analyze and model pedestrians’ red-light running behavior on a two-stage crossing at signalized intersections. This paper focuses on analyzing the characteristics of pedestrian red-light violation behavior at the two stages, including the time distribution of violation behavior, the consistency of violation behavior, and the violation behavior in group.  A goal-oriented and time-driven red-light violation behavior model was proposed for pedestrian two-stage crossing. A video-recording method was used to collect field data, and the results show that pedestrians in the two directions present different red-light violation behaviors in time selection and violation count, as well as, pedestrians in the two stages of a direction present different red-light violation behaviors in time selection. The main reasons leading to the phenomena were analyzed, regarding from people’s cognitive psychology and visual perception. The results also show that the proposed model is effective in simulating pedestrian red-light violation behavior of twice crossing. This research provides a theoretical basis for optimizing signal timing, improving pedestrian safety and developing user-friendly transportation system

    Recent Health Diagnosis Methods for Lithium-Ion Batteries

    Get PDF
    Lithium-ion batteries have good performance and environmentally friendly characteristics, so they have great potential. However, lithium-ion batteries will age to varying degrees during use, and the process is irreversible. There are many aging mechanisms of lithium batteries. In order to better verify the internal changes of lithium batteries when they are aging, post-mortem analysis has been greatly developed. In this article, we summarized the electrical properties analysis and post-mortem analysis of lithium batteries developed in recent years and compared the advantages of varieties of both destructive and non-destructive methods, for example, open-circuit-voltage curve-based analysis, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. On this basis, new ideas could be proposed for predicting and diagnosing the aging degree of lithium batteries, at the same time, further implementation of these technologies will support battery life control strategies and battery design
    • …
    corecore